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Just How Much Stormwater Research?

NCDOT Research & Innovation Summit

• Over 71 sites monitored across NC
• Over 2,751 storm events
• Over 33,579 event mean concentrations
• 162 different analytes
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Characterizing Roadway Runoff
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Swale Research
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Minimize Bacterial 
Contamination
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Bioswale Design Optimization
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New BMPs – Biofiltration Conveyance
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Undersized BMPs
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Erosion Control Research Projects
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Evaluating of Flocculants: 
Optimizing Characteristics and 
Screening Methods – RP 2015-16



Straw Mulch Binding Agents
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Future Research Needs
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How do we increase the ecological uplift of 
the roadway corridor?

– Integration of ecosystem services
– Entirely new types of BMPs
– Achieve triple bottom line benefits:

• Environmental improvement
• Societal benefits
• Financial gains



Example:  Pollinator Habitat Zones
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Selection, Installation, and 
Evaluation of Zoysiagrasses

for NC Roadsides

Grady Miller, PhD
Susana Milla-Lewis, PhD



Project #2018-02
2017-2020

• Chemical and mechanical vegetation 
control on >1000 miles of median rail is 
time consuming and expensive.

• Reduced maintenance can translate into 
increased safety due to lower need for 
worker presence.

Concept



Concept

• Zoysiagrass is known to be a thick 
sod-producing, low-growing turfgrass 
that once established has minimum 
weed invasion.

• Limited zoysiagrass seed available. 
• Zoysiagrass sod is currently most 

expensive grass to purchase.







Zoysiagrasses Adapted for all of NC’s 
Climatic Zones



• What zoysiagrasses are available?
• Development work on new germplasm with 

specific characteristics desirable for 
roadside use?

• Large-scale planting equipment evaluation 
(timing factor of 2)?

• Best method and timing (factor of 6) for 
zoysiagrass establishment?

Questions:



Grass/State AL MS GA KY NC SC TN TX VA
Innovation* X
BK-7 X
Carrizo X
Cavalier X X X X
Common
Compadre X X X
Crowne X X
Cutlass X
Diamond X X X
El Toro X X X X X X
Emerald X X X X X
Empire X X X X X X X
Geo X X X X X X
Jamur X X X X X X
L1F X X
Leisure Time X X X
Meyer X X X X X X X X
Palisades X X X X X
Toccoa Green* X
Royal X X X X
SoLo X
BA-189* X
Volunteer X
Y2 (Leisure Time) X
Zenith X X X X X
Zeon X X X X X X X
Zorro X X X X X X
Total Number 8 5 15 2 14 13 11 19 4

Available zoysiagrass cultivars grown in nine southern states.



Compadre
Crowne

Meyer

XZ09015

XZ14069

XZ14070

XZ14071

XZ14072

Zenith (seed)
Zeon

Pe
ce

nt
 C

ov
er

0

10

20

30

40

50

Yadkinville 10 Sep 
LaGrange 23 Sep 

Developmental Germplasm Evaluation Preliminary Results



Wilkesboro (West) Site – Date/Method

Salisbury (West) Site - Equipment

LaGrange (East) Site -
Date/Method & Equipment





















Method & 
Timing 
Study

Seed vs Sprigs

3 spring, 3 fall 
plantings
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• Zoysiagrass may be an alternative 
roadside vegetation

• Planting will continue to be a challenge –
soil conditions and water availability

• Seeding may be the best route for roadside 
establishment (economically)

• New germplasm may reduce the 
challenges

• Fall versus spring establishment may not 
provide an advantage (or significant 
disadvantage).

Preliminary Conclusions
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Introduction
 Point cloud data, collected through Geiger and terrestrial 

LiDAR and bathymetric sonar technologies, provide rich 
information in terms of hydraulic structures and associated 
site conditions (Chen 2012; Prendergast and Gavin 2014; 
Bisio 2017). 

LiDAR 2D image of a bridge LiDAR 3D scan from the same bridge
The bridge is located in Gaston County, NC



Current Issues
 However, the efficient processing and classification of 

point cloud data and their classification to generate 3D 
hydraulic features of interest represent a grand challenge 
because 

 The volume of the point cloud data involved 
is often huge (a big data analytics 
challenge; see Tang and Feng 2017), 

 Hydraulic features of interest are often 
complicated in terms of their shape and 
the occurrence of temporal site and 
structural changes (see Chen 2012; Watson, 
Chen et al. 2011). 



Proposed Solutions
 Potential Solutions: Deep Learning!!!

 Combine unsupervised and supervised learning for a 
hierarchical representation of features of interest (Erhan et 
al. 2010; LeCun et al. 2015)
 Outperform conventional machine learning algorithms (see 

Zheng, Tang, and Zhao, 2019)
 Ideal for feature detection and classification (Yu et al. 2015)

Image source: https://upload.wikimedia.org/wikipedia/commons/8/81/Deep_learning.png
https://en.wikipedia.org/wiki/File:Typical_cnn.png



Proposed Solutions contd:
 Potential Solutions: Deep Learning!!!

 Increasing applications for operations of unmanned 
systems:
 Autonomous vehicles (self-driving cars) 
 Unmanned aerial systems (e.g., drones)

Image source: https://commons.wikimedia.org/wiki/File:Google_self-driving_car_in_Mountain_View.jpg
https://c.pxhere.com/images/7a/8f/3f18ae11e4cecc35044c840bca70-1446051.jpg!d

https://commons.wikimedia.org/wiki/File:Google_self-driving_car_in_Mountain_View.jpg
https://c.pxhere.com/images/7a/8f/3f18ae11e4cecc35044c840bca70-1446051.jpg!d


Framework
 We have been developing DeepHyd, a novel spatially explicit 3D modeling 

framework and software package that are based on deep learning as a 
cutting-edge artificial intelligence approach for automated and reliable 
classification of hydraulic structures from point cloud data.



Field Data Collection
 Web GIS-based interface that guides fieldwork design 

 Web 2.0 design
 Wordpress web 

interface
 ESRI ArcGIS Online 

for geospatial data 
management and 
mapping

https://cybergis.uncc.edu/deephyd/

https://cybergis.uncc.edu/deephyd/


Field Data Collection
 Terrestrial LiDAR data and intensity 

images of hydraulic structures for sites 
(including bridges, culverts, and pipes)
 FARO Focus S 350

 Bathymetric sonar data for at least one 
of those sites using an unmanned NC 
DOT bathymetric surveying boat

 Use UAS (drone) technologies to collect 
geotagged pictures and videos of the 
hydraulic structures
 DJI Phantom 4 Pro V2.0

 Collect topographic info via GPS and 
total station to field truth the LiDAR and 
sonar results

Image and information source: https://www.dji.com/phantom-4-pro
https://www.kwipped.com/rentals/product/topcon-gts220-total-station/1535
https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/

https://www.dji.com/phantom-4-pro
https://www.kwipped.com/rentals/product/topcon-gts220-total-station/1535
https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/


Deep Learning for 3D Point Cloud Classification
 A deep learning-based artificial intelligence 

approach for the classification of the extracted features 
into hydraulic structures of interest

DeepHyd

3D Object Detection
3D Object Classification



 Combine, and compare with, expert knowledge from fieldwork for 
training and testing of deep learning classifiers

Deep Learning for 3D Point Cloud Classification



Model Automation-Integration-Acceleration
 Use the GIS-based scientific workflows to automate 1) 

the classification task, and 2) the management, pre/post-
processing, and 3D visual analytics of point clouds and 
related data

 Geospatial analysis and modeling steps often need to be repeated
(for training and testing of the deep learning classifiers) and 
reused by different users

 A number of analysis/modeling steps are often involved and need 
to be coupled in this project



Model Automation-Integration-Acceleration
 GIS-based scientific workflows automate 1) the classification 

task, and 2) the management, pre/post-processing, and 3D visual 
analytics of related data

(Figure Source: Tang et al. 2017)

• Model Automation!
• Model Integration!
• Model Acceleration!

• Solutions:
• Kepler workflow 

management system 
(https://kepler-project.org/)

• Python
• Jupyter Notebook
• Open-source!

https://kepler-project.org/


Model Acceleration
 Leveraging high-performance computing (HPC) capabilities to 

resolve the big data-driven computational challenge of geospatial 
analysis and modeling in this project

Image source: https://i0.wp.com/hanusoftware.com/wp-content/uploads/event_218867862.png?w=360&ssl=1

• Parallel geocomputational algorithms 
that deploy the processing, analysis, or 
modeling steps to HPC resources at 
Center for Applied GIScience (CAGIS) 
at UNC Charlotte. 
• Sapphire: 288-CPU Windows 

cluster for advanced 
geocomputation!

• Graphics Processing Units (GPUs)

H P C



Preliminary Results



Field Data Collection
 Use UAS (drone) technologies to collect geotagged pictures and videos of 

the hydraulic structures 
 Ongoing (testing and validation) Sample Snapshots

Location: UNC Charlotte



 LiDAR Point Cloud
Field Data Collection

3D Point Cloud 2D Image

Site #7

Site #8

Site #3

https://cybergis.uncc.edu/deephyd/ for bridge number

https://cybergis.uncc.edu/deephyd/


 Hardware
 CUDA-enabled GPU 

 Nvidia Tesla K40 
(2,880 cores)

 Software
 Point Net++: A state of 

the art point cloud 
semantic segmentation 
method

 TensorFlow for deep 
learning

 CUDA 9.0 enabling GPU 
computing 

 Docker (Container as 
services)

Deep Learning for 3D Point Cloud Classification

PointNet++ and image source: http://stanford.edu/~rqi/pointnet2/
TensorFlow: https://www.tensorflow.org/
CUDA 9.0: https://developer.nvidia.com/about-cuda
CUDA: Compute Unified Device Architecture 
GPU: Graphics Processing Units

http://stanford.edu/%7Erqi/pointnet2/
https://www.tensorflow.org/
https://developer.nvidia.com/about-cuda


Deep Learning Classification of Point Cloud Data
 A test run has been completed on the Shapenet demo data

 16 category, more than 10 thousand models
 30 epochs in need of 3 hours on Tesla K40 GPU (2,880 cores)

Shapenet: https://www.shapenet.org/

Examples of learned results by the deep learning algorithm



Deep Learning Classification of Point Cloud Data

 Specific bridge-related point cloud data need to be made (labelled) for training 
(ongoing)

 Further develop and fine tune the deep learning algorithm

2D image of an office at UNC Charlotte Classified LiDAR point cloud data using deep learning

 Test run:
 261 indoor scenes with 70 million points
 13 types of objects (chair, wall, and floor etc.) 
 10 hours for 60 epochs



Anticipated Research Products
 A novel deep learning-based model, DeepHyd, for the automated and 

intelligent classification of hydraulic structures from point cloud data 
collected by LiDAR and sonar technologies. 

 An open-source software package that implements the proposed deep 
learning-based classification model.

 A well-trained classifier based on cutting-edge deep neural network 
technologies specifically engineered for the identification of hydraulic 
structures for NCDOT. 

 A database of hydraulic structures identified by the deep learning model 
or domain experts for re-use. 

 Tutorials and manuals of the proposed model and software tool for training 
users of interest. 

DeepHyd



Preliminary Conclusions
 The DeepHyd framework and associated software package, leveraging 

cutting-edge deep learning technologies, provides solid support for the 
automated and efficient classification of 3D hydraulic structures from 
point cloud data. 

 The DeepHyd framework holds great promise in terms of applicability of 
detecting other (3D) geospatial features.

 This DeepHyd products will significantly aid the mission of the NCDOT 
Hydraulics Unit with respect to:
 Development of guidelines for data collection for roadway drainage studies 
 Waterway hydraulic calculations and design based on NCDOT standards 

 The established procedures and systems can further enhance data 
sharing between NCDOT and other stakeholders such as 
 USGS and the Department of Environmental Protection (DEP) to prevent 

environmental degradation, 
 Department of Public Safety for the asset management and evaluation of 

hydraulic structures (e.g. bridges, or road surfaces).
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Thank you! 
Questions?

https://gis.uncc.edu
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