

NORTH CAROLINA

Department of Transportation

NCDOT's Stormwater Research Program

Andrew McDaniel, PE

May 7, 2019

Highway-Stormwater PROGRAM

Stormwater Runoff

Clean Water Act Permit

Stormwater Research Program

Just How Much Stormwater Research?

- Over 71 sites monitored across NC
- Over 2,751 storm events
- Over 33,579 event mean concentrations
- 162 different analytes

Characterizing Roadway Runoff

Swale Research

Minimize Bacterial Contamination

Bioswale Design Optimization

New BMPs – Biofiltration Conveyance

Undersized BMPs

Erosion Control Research Projects

Evaluating of Flocculants:
Optimizing Characteristics and
Screening Methods – RP 2015-16

Comparing Low-Cost Methods for Stabilizing Diversions and Ditches – RP 2014-21

Straw Mulch Binding Agents

Performance Standards for Straw Mulch Binding Agents – RP 2015-17

Future Research Needs

How do we increase the ecological uplift of the roadway corridor?

- Integration of ecosystem services
- Entirely new types of BMPs
- Achieve triple bottom line benefits:
 - Environmental improvement
 - Societal benefits
 - Financial gains

Example: Pollinator Habitat Zones

Highway Stormwater PROGRAM

Selection, Installation, and Evaluation of Zoysiagrasses for NC Roadsides

Grady Miller, PhD
Susana Milla-Lewis, PhD

Concept

- Chemical and mechanical vegetation control on >1000 miles of median rail is time consuming and expensive.
- Reduced maintenance can translate into increased safety due to lower need for worker presence.

Project #2018-02 2017-2020

Concept

- Zoysiagrass is known to be a thick sod-producing, low-growing turfgrass that once established has minimum weed invasion.
- Limited zoysiagrass seed available.
- Zoysiagrass sod is currently most expensive grass to purchase.

Zoysiagrasses Adapted for all of NC's Climatic Zones

Questions:

- What zoysiagrasses are available?
- Development work on new germplasm with specific characteristics desirable for roadside use?
- Large-scale planting equipment evaluation (timing factor of 2)?
- Best method and timing (factor of 6) for zoysiagrass establishment?

Available zoysiagrass cultivars grown in nine southern states.

Grass/State	AL	MS	GA	KY	NC	SC	TN	TX	VA
Innovation*					X				
BK-7	Х								
Carrizo								X	
Cavalier			Χ		Χ	Χ		Χ	
Common									
Compadre			Χ		Χ				Χ
Crowne					X			Χ	
Cutlass								Χ	
Diamond						X	Χ	Χ	
El Toro	Х		Χ		X	Χ	Χ	Χ	
Emerald	Χ		Χ		X		Χ	X	
Empire	Х	Χ	Χ		X	Χ		Χ	Χ
Geo	X		Χ		X	X	Χ	X	
Jamur	X	X	Χ		X	Χ		Χ	
L1F			X			X			
Leisure Time			Χ		X	Χ			
Meyer	Χ	X	Χ	X	X		Χ	X	X
Palisades		Χ	Χ			Χ	Χ	Χ	
Toccoa Green*								X	
Royal			Χ			Χ	Χ	Χ	
SoLo							X		
BA-189*								Χ	
Volunteer							Χ		
Y2 (Leisure Time)								Χ	
Zenith			Χ	X	X	X		X	
Zeon	X		Χ		X	Χ	Χ	Χ	Χ
Zorro		X	X		X	X	Х	X	
Total Number	8	5	15	2	14	13	11	19	4

Developmental Germplasm Evaluation Preliminary Results

DOT Equipment Evaluation—Goldsboro Year 2

N ^

#

Seed vs sprig

270 feet Rep 1 Rep 2 Rep 3 Rep 4 Mat Old Mat Straw | Control Straw | Control |Control Mat Control: Straw Fall 2018 New, Control Straw Straw | Control Straw | Control Control Mat Straw Mat Mat Mat Disk New, Mat Control Straw Control Mat Straw Straw Control Mat Control Mat Straw No Disk New, Straw | Control | Mat Straw ! Mat | Control [Control] Straw |Control| Straw Disk Spring 2019 New. Straw | Control Mat | Control | Straw Control Straw Mat Control Straw Mat No Disk Control Straw Mat Straw Control Control Mat Mat Control Old Mat Straw Straw

Seed vs sprig

Highway 70

Method & Timing Study

Seed vs Sprigs

3 spring, 3 fall plantings

Wilkesboro (West) Site

LaGrange (East) Site

Preliminary Conclusions

- Zoysiagrass may be an alternative roadside vegetation
- Planting will continue to be a challenge soil conditions and water availability
- Seeding may be the best route for roadside establishment (economically)
- New germplasm may reduce the challenges
- Fall versus spring establishment may not provide an advantage (or significant disadvantage).

NC-DOT
Derek Smith
Kevin Clemmer
Rick Seagroves
Robert Simpson

NCSU Technical Work
Drew Pinnix
Ben Gragg
Ray McCauley
Esdras Carbajal

DeepHyd: A Deep Learning-based Artificial Intelligence Approach for the Automated Classification of Hydraulic Structures from LiDAR and Sonar Data

Wenwu Tang^{1,2} Shen-En Chen³ John Diemer²

Craig Allan^{1,2}

Matthew S. Lauffer⁴

² Department of Geography and Earth Sciences

³ Department of Civil and Environmental Engineering The University of North Carolina at Charlotte

⁴ Hydraulics Unit

NC Department of Transportation

May 7th, 2019

NCDOT Research & Innovation Summit

Acknowledgement

- North Carolina Department of Transportation (NCDOT)
- Steering and Implementation Committee from NCDOT:
 - Matthew Lauffer, John W. Kirby, Tom Langan, Gary Thompson, Paul Jordan, Mark Swartz, Mark Ward, Derek Bradner, Brian Radakovic, Kevin Fischer
- This study is supported by the NCDOT project entitled <u>"DeepHyd: A Deep Learning-based Artificial Intelligence Approach for the Automated Classification of Hydraulic Structures from LiDAR and Sonar Data"</u>
 - PIs: Drs. Wenwu Tang, Shenen Chen, John Diemer, Craig Allan from the University of North Carolina at Charlotte

Introduction

• Point cloud data, collected through Geiger and terrestrial LiDAR and bathymetric sonar technologies, provide rich information in terms of hydraulic structures and associated site conditions (Chen 2012; Prendergast and Gavin 2014; Bisio 2017).

LiDAR 2D image of a bridge

LiDAR 3D scan from the same bridge

The bridge is located in Gaston County, NC

Current Issues

 However, the efficient processing and classification of point cloud data and their classification to generate 3D hydraulic features of interest represent a grand challenge because

• The volume of the point cloud data involved is often huge (a **big data analytics challenge**; see Tang and Feng 2017),

• Hydraulic features of interest are often **complicated** in terms of their shape and the occurrence of temporal site and structural changes (see Chen 2012; Watson, Chen et al. 2011).

Proposed Solutions

- Potential Solutions: Deep Learning!!!
 - Combine unsupervised and supervised learning for a hierarchical representation of features of interest (Erhan et al. 2010; LeCun et al. 2015)
 - Outperform conventional machine learning algorithms (see Zheng, Tang, and Zhao, 2019)
 - Ideal for **feature detection and classification** (Yu et al. 2015)

Image source: https://upload.wikimedia.org/wikipedia/commons/8/81/Deep_learning.png https://en.wikipedia.org/wiki/File:Typical cnn.png

Proposed Solutions contd:

- Potential Solutions: Deep Learning!!!
 - Increasing applications for operations of unmanned systems:
 - Autonomous vehicles (self-driving cars)
 - Unmanned aerial systems (e.g., drones)

Framework

 We have been developing DeepHyd, a novel spatially explicit 3D modeling framework and software package that are based on deep learning as a cutting-edge artificial intelligence approach for <u>automated and reliable</u> <u>classification of hydraulic structures from point cloud data</u>.

Field Data Collection

Web GIS-based interface that guides fieldwork design

- Web 2.0 design
- Wordpress web interface
- ESRI ArcGIS Online for geospatial data management and mapping

Field Data Collection

- Terrestrial LiDAR data and intensity images of hydraulic structures for sites (including bridges, culverts, and pipes)
 - FARO Focus S 350
- Bathymetric sonar data for at least one of those sites using an unmanned NC DOT bathymetric surveying boat
- Use UAS (drone) technologies to collect geotagged pictures and videos of the hydraulic structures
 - DJI Phantom 4 Pro V2.o
- Collect topographic info via GPS and total station to field truth the LiDAR and sonar results

Image and information source: https://www.kwipped.com/rentals/product/topcon-gts220-total-station/1535 https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/

Deep Learning for 3D Point Cloud Classification

 A deep learning-based artificial intelligence approach for the classification of the extracted features into hydraulic structures of interest

Deep Learning for 3D Point Cloud Classification

 Combine, and compare with, expert knowledge from fieldwork for training and testing of deep learning classifiers

Model Automation-Integration-Acceleration

- Use the GIS-based scientific workflows to automate 1)
 the classification task, and 2) the management, pre/postprocessing, and 3D visual analytics of point clouds and
 related data
 - Geospatial analysis and modeling steps often need to be repeated (for training and testing of the deep learning classifiers) and reused by different users
 - A number of analysis/modeling steps are often involved and need to be coupled in this project

Model Automation-Integration-Acceleration

• GIS-based scientific workflows automate 1) the classification task, and 2) the management, pre/post-processing, and 3D visual analytics of related data

- Model Automation!
- Model Integration!
- Model Acceleration!
- Solutions:
 - Kepler workflow management system (<u>https://kepler-project.org/</u>)
 - Python
 - Jupyter Notebook
 - Open-source!

(Figure Source: Tang et al. 2017)

Model Acceleration

- Leveraging high-performance computing (HPC) capabilities to resolve the big data-driven computational challenge of geospatial analysis and modeling in this project
 - Parallel geocomputational algorithms that deploy the processing, analysis, or modeling steps to HPC resources at Center for Applied GIScience (CAGIS) at UNC Charlotte.
 - **Sapphire**: 288-CPU Windows cluster for advanced geocomputation!
 - Graphics Processing Units (GPUs)

Preliminary Results

Field Data Collection

- Use UAS (drone) technologies to collect geotagged pictures and videos of the hydraulic structures
 - Ongoing (testing and validation)

Location: UNC Charlotte

Field Data Collection

LiDAR Point Cloud

2D Image

https://cybergis.uncc.edu/deephyd/ for bridge number

Deep Learning for 3D Point Cloud Classification

- Hardware
 - CUDA-enabled GPU
 - Nvidia Tesla K40 (2,880 cores)
- Software
 - Point Net++: A state of the art point cloud semantic segmentation method
 - TensorFlow for deep learning
 - CUDA 9.0 enabling GPU computing
 - Docker (Container as services)

PointNet++ and image source: http://stanford.edu/~rqi/pointnet2/

TensorFlow: https://www.tensorflow.org/

CUDA 9.0: https://developer.nvidia.com/about-cuda

CUDA: Compute Unified Device Architecture

GPU: Graphics Processing Units

Deep Learning Classification of Point Cloud Data

- A test run has been completed on the Shapenet demo data
 - 16 category, more than 10 thousand models
 - 30 epochs in need of 3 hours on Tesla K40 GPU (2,880 cores)

Examples of learned results by the deep learning algorithm

Deep Learning Classification of Point Cloud Data

• Test run:

- 261 indoor scenes with 70 million points
- 13 types of objects (chair, wall, and floor etc.)
- 10 hours for 60 epochs

2D image of an office at UNC Charlotte

Classified LiDAR point cloud data using deep learning

- Specific bridge-related point cloud data need to be made (labelled) for training (ongoing)
- Further develop and fine tune the deep learning algorithm

Anticipated Research Products

- A novel deep learning-based model, DeepHyd, for the automated and intelligent classification of hydraulic structures from point cloud data collected by LiDAR and sonar technologies.
- An open-source software package that implements the proposed deep learning-based classification model.
- A well-trained classifier based on cutting-edge deep neural network technologies specifically engineered for the identification of hydraulic structures for NCDOT.
- A database of hydraulic structures identified by the deep learning model or domain experts for re-use.
- Tutorials and manuals of the proposed model and software tool for training users of interest.

 DeepHyd

Data Fusion

Preliminary Conclusions

- The DeepHyd framework and associated software package, leveraging cutting-edge deep learning technologies, provides solid support for the automated and efficient classification of 3D hydraulic structures from point cloud data.
- The DeepHyd framework holds great promise in terms of **applicability of detecting other (3D) geospatial features**.
- This DeepHyd products will significantly aid the mission of the NCDOT Hydraulics Unit with respect to:
 - Development of guidelines for data collection for roadway drainage studies
 - Waterway hydraulic calculations and design based on NCDOT standards
- The established procedures and systems can further enhance data sharing between NCDOT and other stakeholders such as
 - USGS and the Department of Environmental Protection (DEP) to **prevent environmental degradation**,
 - Department of Public Safety for the asset management and evaluation of hydraulic structures (e.g. bridges, or road surfaces).

References

- **Chen, S.E.** (2012). Laser Scanning Technology for Bridge Monitoring, *Laser Scanner Technology*, InTech Pub., ISBN 979-953-307-265-3.
- Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P. and Bengio, S., 2010. Why does unsupervised pre-training help deep learning?. *Journal of Machine Learning Research*, 11(Feb), 625-660.
- LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. *Nature*, 521(7553), 436-444.
- Prendergast, L.J. and Gavin, K., 2014. A review of bridge scour monitoring techniques. *Journal of Rock Mechanics and Geotechnical Engineering*, 6(2), 138-149.
- Tang, W. and Feng, W., 2017. Parallel map projection of vector-based big spatial data: Coupling cloud computing with graphics processing units. *Computers, Environment and Urban Systems*, 61, 187-197.
- Tang, W., Feng, W., Jia, M., Shi, J., Zuo, H., Stringer, C.E. and Trettin, C.C., 2017. A cyber-enabled spatial decision support system to inventory Mangroves in Mozambique: coupling scientific workflows and cloud computing. *International Journal of Geographical Information Science*, 31(5), pp.907-938.
- Watson, C., **Chen, S.E.**, Bian, H. and Hauser, E., 2011. LiDAR scan for blasting impact evaluation on a culvert structure. *Journal of Performance of Constructed Facilities*, 27(4), 460-467.
- Yu, Y., Li, J., Guan, H., Jia, F. and Wang, C., 2015. Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 8(2), 709-726.
- Zheng, M., **Tang, W.**, and Zhao, X., 2019, Hyperparameter optimization of neuralnet work-driven spatial models accelerated using cyber-enabled high-performance computing, *International Journal of Geographical Information Science*. 33(2): 314-345

Thank you! Questions?

https://gis.uncc.edu

